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Abstract  In high dimensional data, Principal 
Component Analysis (PCA)-based Pearson correlation 
remains broadly employed to reduce the data dimensions 
and to improve the effectiveness of the clustering partitions. 
Besides being prone to sensitivity on non-Gaussian 
distributed data, in a high dimensional data analysis, this 
algorithm may influence the partitions of cluster as well as 
generate exceptionally imbalanced clusters due to its 
assigned equal weight to each observation pairs. To solve 
the unbalanced clusters in hydrological study caused by 
skewed character of the dataset, this study came out with a 
robust method of PCA in term of the correlation. This study 
will explain a RPCA to be proposed as an alternative to 
classical PCA in reducing high dimensional dataset to a 
lower form as well as obtain balance clustering result. This 
study improved where RPCA managed to downweigh the 
far-from-center outliers and develop the cluster partitions. 
The results for both methods are compared in term of 
number of components and clusters obtained as well as the 
clustering validity. Regarding the internal and stability 
validation criteria, this study focuses on the cluster’s 
quality in order to validate the results of clusters obtained 
for both methods. From the findings, the amount of clusters 
had improved significantly by using RPCA compared to 
classical PCA. This proved that the proposed approach are 
outliers resistant than classical PCA as the proposed 
approach made a thorough observation assessment and 

downweigh the ones which were distant from the data 
center.  
Keywords  Principal Component Analysis (PCA), 
Pearson Correlation, Tukey’s Biweight Correlation, cluster 
analysis 

1. Introduction
Hydrological extreme events are situation whereby the 

hydrological situation is highly extreme such as sudden 
increase in magnitude and frequency of high-volume 
rainfall, which likely brings catastrophic damage to society, 
economy as well as the environment. Over decades, there 
are numerous studies on hydrological extreme events using 
statistical approaches. This is due to the fact that 
hydrological processes such as extreme events exhibit the 
non-linearity and non-stationary characteristics. To address 
this issue, previous research applied various approaches 
such as frequency-analysis methods [1], [2], stochastic 
model [3], Covariates based models [4] and many more. 
Recently, Principal Component Analysis (PCA), known 
for its ability as dimensionality reductions tools, is 
regularly used as a pre-processing method in subsiding the 
data set dimensionality comprising diverse interrelated 
variables while maintaining the most variations possible in 
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the data set [5]. Besides, PCA was often used as a guide in 
the process of clustering the pattern in improving the 
cluster solutions’ effectiveness and accurateness [6].  

However, the selection of clusters number for extreme 
rainfall identification using classical PCA often lead to 
inaccuracy. This is due to the fact that classical PCA are 
highly sensitive to the outliers since it measures the 
variability through the significance of the variance based 
eigenvalues and eigenvectors [7]. Since extreme rainfall 
datasets are susceptible to outliers, the used of classical 
PCA may not be suitable. Robust PCA (RPCA) on the 
other hand is a modified version of Pearson correlation 
matrix in classical PCA to arrange a robust cluster partition. 
RPCA is a robust measure of location and scale in the PCA 
which incorporated using Tukey’s biweight correlation to 
downweigh observations that were far from the data center 
and resistant to outlying observations, due to its 
characteristics. RPCA was able to overcome possible 
challenges clusters in a high dimensional space which may 
influence the partitions of cluster as well as generating 
excessively unbalanced. Prior to that, the initial data matrix 
was made standard by a scale estimator and robust location 
so that possible masking or swamping effects could be 
avoided [8]. In this paper, the classical PCA and RPCA 
were applied to torrential rainfall data of East Cost 
Peninsular Malaysia to obtain a robust cluster partitions 
regarding the validity indices. 

2. Study Area

Figure 1.  The location of 30 rainfall stations in east-coast Peninsular 
Malaysia 

This study used Malaysia’s Department of Irrigation and 
Drainage daily rainfall data with a time interval between 
1987 and 2018. This study focuses on extreme 
hydrological event, namely the torrential rainfall, with a 
threshold of 60mm/day. This is a common setting applied 
in a tropical climate [5]. 175 days and 30 rainfall stations 
over east coast Peninsular Malaysia were yielded by the 
filtered days with rainfall exceeding 60mm in minimum 
1.5% of the stations. Figure 1 shows the geographical 
coordinates of 48 rainfall stations chosen from east-coast of 
Peninsular Malaysia.  

3. Methodology

Principal Component Analysis 

Reducing a large dimension dataset to lower dimension 
while maintaining the original variability in the dataset is 
the purpose of the PCA [9]. An observation set of feasibly 
interconnected variables which transforms into a set of 
linearly uncorrelated ones, namely principal component 
(PC), helps achieve the above-mentioned purposes. The 
initial PC comprises the original data variations 
extensively. Subsequently, every succeeding component 
extensively comprises outstanding variations, conditional 
on being not correlated to prior components.  

The derivative correlation matrix from the matrix 
contributes to the PCA in calculating its eigenvalues and 
eigenvectors. The related components comprising majority 
of the data variations is obtained as such [10-11]. A 
minimum of 70% of the whole variation becomes a 
benchmark for ideal cut-off values for cumulative 
percentage for extracting the number of components [12]. 
Once the cut-off values were determined, the newly dataset 
were obtained from component matrix of eigenvectors 
“loadings”. These new datasets comprise linear 
transformations of the initial variables by maximizing the 
new principal component variance. Including the excessive 
principal components raises the significance of the outlier, 
resulting in poor pattern identification [13]. 

Pearson Correlation matrix 

For applications like climatology and environmental 
sciences, Pearson correlation is generally employed in 
PCA to determine the eigenvectors and eigenvalues [12]. 
Commonly, it measures the correspondences or distances 
before a clustering algorithm is implemented. The Pearson 
correlation coefficient is defined as: 

𝑟𝑖𝑗 =
∑ (𝑋𝑖
𝑛
𝑖=1 −𝑋�𝑖)(𝑋𝑗−𝑋�𝑗)

�∑ (𝑋𝑖−𝑋�𝑖)2 ∑ (𝑋𝑗−𝑋�𝑗)2𝑛
𝑖=1

𝑛
𝑖=1

  (1) 

where 𝑋𝑖  and 𝑋𝑗  indicate the vectors of observations in 
matrix data 𝐗  with 𝑛  observations, with 𝑋𝑖  and 𝑋𝑗 
indicate the vectors mean. 
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RPCA 

Tukey’s biweight correlation is dependent on the 
employed M-estimator in the robust correlation estimates. 
There is a derivative function, 𝜓 for M-estimator that 
decides the assigned observational in the data set. It is 
capable of downweighing the observations for the purpose 
of reflecting the impacts from the data center [14]. The 
derivative function is: 

𝜓(𝑢) = �𝑢(1 − 𝑢)2
0

 |𝑢|   ≤  1
|𝑢|   ≤  1  (2) 

Distinctly, if |𝑢| is adequately big, 𝜓(𝑢) decreases to 
zero. The smallest fraction of contamination in Breakdown 
point (BP) may cause an inaccurate result as BP is vital in 
measuring the resistance to the outlier data values in 
M-estimators [15]. For this research, Tukey’s biweight 
with BP at 0.2, 0.4, 0.6 and 0.8 respectively are evaluated. 
An experiment by [16] and [9] had shown that for most 
conditions, the best performance was by a BP of 0.4. Such 
studies also found out that the results were more precise 
and effective than others.  

There are two steps in producing the biweight estimate 
of correlation: first, the location estimate, 𝑇�  is calculated 
and second, the shape estimate, 𝑆̃ is updated. The (𝑖, 𝑗)𝑡ℎ 
element of 𝑆̃ , i.e. 𝑠̃𝑖𝑗  is a resistant covariance estimate 
among vectors, 𝑋𝑖  and 𝑋𝑗 . The biweight correlation 
between the stated vectors could be determined by: 

𝑟̃𝑖𝑗 =
𝑠̃𝑖𝑗

�𝑠̃𝑖𝑖𝑠̃𝑗𝑗
   (3) 

with 

𝑇𝑛
(𝑘+1) =

∑ 𝑋𝑖𝑤(𝑢𝑖(𝑘))𝑛
𝑖=1
∑ 𝑤(𝑢𝑖(𝑘))𝑛
𝑖=1

  𝑘 = 0,1,2, …    (4) 

𝑆𝑛
(𝑘+1) =

∑ 𝑤(𝑢𝑖(𝑘))(𝑋𝑖−𝑇(𝑘+1))(𝑋𝑖−𝑇(𝑘+1))𝑡𝑛
𝑖=1

∑ 𝑤(𝑢𝑖(𝑘))𝑛
𝑖=1 (𝑢𝑖(𝑘))

   (5) 

where 𝑇𝑛
(𝑘+1) is a location vector and 𝑆𝑛

(𝑘+1) is a shape
matrix such that 𝑘 = 0,1,2, … 

Once the numbers of PC are determined, as a 
measurement, an index by [17] is applied to establish the 
optimal cluster partitions for the input data as implied by 
the maximum index value. As a consequence, a RPCA for 
cluster analysis exhibits higher possibilities of producing a 
better cluster partition as well as having higher resistance 
towards outlying values compared to Pearson correlation in 
PCA.  

There are several steps regarding the proposed algorithm. 
First of all, the initial step is obtaining the input matrix. 
Secondly, the next step is standardizing the observations 
with the data of the medians and mean absolute deviations. 
Thirdly, the breakdown point is set at 0.4 for the Tukey's 
biweight correlation. Fourthly, the calculation of the 
Tukey's biweight correlation is carried out. Consequently, 
the selection of the principal components which are 
furthermost significant is done according to the overall 
variation accumulative percentage. After this stage is when 

the new set of data is derived. For this new set of data, the 
Calinski and Harabasz index is calculated. The significance 
of this step is to establish the most appropriate clusters 
amount. Finally, the clustering algorithm is applied. 

4. Results and Discussion
Table 1 indicates a substantial dissimilarity in the sum of 

components as well as clusters established from both 
correlation measures in PCA at all levels of accumulative 
variation percentages. Seemingly, RPCA entails a smaller 
components quantity in extracting to establish, at minimum, 
70% of accumulative variation percentage as a comparison 
to the classical PCA. As an example, 14 components were 
maintained with RPCA while it was 16 with classical PCA 
at 70% accumulative variation percentage. However, 
identifying rainfall patterns for the selection cumulative 
percentage beyond 75% was an unsuitable principal 
components quantity discontinuation. It is due to the result 
shows that cumulative percentage that extracted more than 
75% variation of RPCA were obtained much number of 
components for rainfall dataset. 

Table 1.  Total components and clusters acquired according to classical 
PCA and RPCA from rainfall data of east-coast Peninsular Malaysia 

Cumulative 
percentage 

(%) 

Sum of components Sum of clusters 
Classical 

PCA RPCA Classical 
PCA RPCA 

60 22 7 2 7 

65 26 10 2 4 

70 30 14 2 4 

75 36 18 2 4 

80 42 23 2 4 

85 49 29 2 4 

90 58 36 2 2 

95 62 45 2 2 

For cluster partitions, Table 1 also demonstrates that 
compared to classical PCA, the sum of clusters is more 
influential towards RPCA depending on the sum of the 
retained components. The number of cluster partition 
become stabilize at phase 65% to 85% of the variation of 
the data which is 4 clusters. However, the resultant number 
of clusters is exactly maintained as the classical PCA when 
obtained more than 85% accumulative variance percentage. 
Moreover, the sum of clusters from the classical PCA 
appeared stabilizing at simply two clusters irrespective of 
the accumulative variation percentage employed. 
Predominantly in identifying rainfall patterns in 
hydrological studies, practically obtaining more than two 
cluster partitions explains the diverse rainfall patterns 
categories. In consequence, two clusters are observably 
inapplicable since the actual data structure was masked. 
Due to the of the clustering results sensitivity towards the 
acquired amount of components, the accurate amount of 
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components to be maintained should be classified 
accordingly. Importantly, the variations between clusters 
are indicated to be directed towards no less than a principal 
component [18]. 

Table 2.  Indices to calculate clustering results quality for torrential 
rainfall data 

PCA-based Pearson 
correlation RPCA 

Connectivity 3.2790 2.9290 

Dunn Index 0.2849 14.8556 

Silhouette 0.6047 0.9017 

For the evaluation of the cluster partitions, the clustering 
output at 70% accumulative variation percentage on both 
approaches are chosen respectively. For this study, we 
focus on internal and stability validation prescribed by [19], 
connectivity, Dunn index and Silhouette respectively. The 
clustering results quality obtained was demonstrated by the 
validity indices to signify improved internal cluster quality 
as well as stability. As a guideline, with a connectivity 
value range between 0 and infinity, and according to 
previous studies [20], [21], it should be minimized while 
the higher value of Dunn index should indicate a good 
quality of clusters. As for the Silhouette value, 
well-clustered observations have close-to-1 values while 
insufficiently-clustered observations have values nearing 
-1. Table 2 displays that RPCA shows comparatively finer 
clustering results for the three indices when it was 
contrasted against PCA-based Pearson correlation.  

Table 3.  Indices to calculate the clustering results stability for torrential 
rainfall data 

PCA-based Pearson 
correlation RPCA 

AD 984161.30 379054.4 

FOM 74862.54 37401.03 

The stability measures made comparisons of the results 
from the clustering according to the full data to clustering 
by eliminating every column, one after another [22]. 
According to [23], the included stability measures of 
clustering are the average the average distance (AD) and 
the figure of merit (FOM). Table 3 illustrates that RPCA 
also presented better clustering performance compared to 
PCA-based Pearson correlation. AD values for RPCA is 
379054.4 which is smaller than PCA-based Pearson 
correlation. Smaller value of AD is preferred in stability 
measures of clustering. Other than that, small value of 
FOM for RPCA also showed better results since smaller 
values of FOM equaling better performance of clustering. 
Based on the validity indices of the clusters, conclusively, 
RPCA displayed better results in clustering performance in 
terms of internal and stability measures as a comparison to 
classical PCA.  

5. Conclusion
Based on the findings of this research, RPCA was 

evidently well-performed in the clustering method 
compared to PCA-based Pearson correlation. Moreover, 
RPCA has proven its superiority over Classical PCA in 
terms of number of principal components as well as 
number of clusters. The results also showed that the 
number of clusters obtained using RPCA has better 
stability, validity indices as compared to PCA-based 
Pearson Correlation. This study displays significant cluster 
partition enhancement in dealing with imbalanced clusters 
existed in high dimensional data especially for 
hydrological data. It can be defined that the proposed 
RPCA is outlier resistant and able to deal extreme rainfall 
event in Malaysia. 
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